If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2-10t+5=0
a = 4; b = -10; c = +5;
Δ = b2-4ac
Δ = -102-4·4·5
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{5}}{2*4}=\frac{10-2\sqrt{5}}{8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{5}}{2*4}=\frac{10+2\sqrt{5}}{8} $
| 4t^2-5t+5=0 | | 3x=(4x+50) | | -3(3-x)=2 | | -3x-1-3x=-49 | | -5x+6=-84 | | -27=-3x-4x-6 | | 9=14(2/x) | | -4x-8+6x=-10 | | x-33=(x+31)/2 | | -5+2x+3x=-30 | | -6x-3+5x=5 | | x-33=((x+31)/2) | | 2x-5+x=-41 | | Y=6y(7y)-9y+4 | | 2x+6-4x=-6 | | -5x+7+3x=-17 | | -1+x+2x=20 | | 14x+15=11x+21 | | -x+7+4x=-11 | | 3x-6+6x=39 | | 1+2x+x=-11 | | -6=7x-6x+4 | | 6x+2+6x=146 | | n^2+10n-11=0 | | -10=-5r+3+7 | | 3m/4+3=18 | | 3^6x-2=31 | | y=5y(8y)-9y | | 4y-4=3y+10 | | 11/8=x-32/3 | | -3(2x-0,8)=2(x+36) | | k^2+10k-11=0 |